
Cosmo: Contrastive Fusion Learning with Small Data for
Multimodal Human Activity Recognition

Xiaomin Ouyang1, Xian Shuai1, Jiayu Zhou2, Ivy Wang Shi3, Zhiyuan Xie1,
Guoliang Xing1,∗, Jianwei Huang4,5,∗

1The Chinese University of Hong Kong, 2Michigan State University, 3Li Po Chun United World College, Hong Kong,
4The Chinese University of Hong Kong, Shenzhen, 5Shenzhen Institute of Artificial Intelligence and Robotics for Society

ABSTRACT
Human activity recognition (HAR) is a key enabling technology
for a wide range of emerging applications. Although multimodal
sensing systems are essential for capturing complex and dynamic
human activities in real-world settings, they bring several new
challenges including limited labeled multimodal data. In this paper,
we propose Cosmo, a new system for contrastive fusion learning
with small data in multimodal HAR applications. Cosmo features a
novel two-stage training strategy that leverages both unlabeled data
on the cloud and limited labeled data on the edge. By integrating
novel fusion-based contrastive learning and quality-guided atten-
tion mechanisms, Cosmo can effectively extract both consistent and
complementary information across different modalities for efficient
fusion. Our evaluation on a cloud-edge testbed using two public
datasets and a new multimodal HAR dataset shows that Cosmo
delivers significant improvement over state-of-the-art baselines in
both recognition accuracy and convergence delay.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Unsupervised learning.
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1 INTRODUCTION
Human activity recognition (HAR) has a wide range of applications
such as virtual/ augmented reality (VR/AR) [42, 43], smart home
[3, 5], and smart health [13, 18]. In real-world scenarios, human
activities are usually highly complex and dynamic in nature, most
of which are difficult to capture using only a single sensor modality.
Moreover, certain sensors such as RGB cameras may not be an
option in many applications due to the increasing privacy concerns.
To address these issues, several new multimodal sensing systems
have been proposed to leverage multiple privacy-preserving sensor
modalities recently emerged, e.g., depth camera and radar, for HAR
applications [10, 32, 35, 46, 53]. For example, in Alzheimer’s Disease
monitoring, these sensors can track the elder’s daily activities [12,
17, 26], which are important digital biomarkers for early diagnosis.

However, fusing multiple sensor modalities in HAR applications
presents several major challenges. First, different types of sensors
usually produce highly heterogeneous information about the same
events/activities. For example, the inertial measurements and depth
images not only have significantly different dimensions and pat-
terns but also may not be synchronized in the time domain, making
the fusion challenging. Second, there usually exists a very limited
amount of labeled data, as it is difficult to label multimodal data
in real-world settings [23, 37, 46]. For example, the data of many
sensors such as IMU and mmWave radar is not intuitive for hu-
man, making the annotation extremely labor-intensive [46]. Third,
the sensor data in HAR applications is often privacy-sensitive in
nature and cannot be transmitted to the cloud. Lastly, the activity
recognition model needs to be customized for individuals whose ac-
tivities may yield dynamic characteristics over time [39, 47], which
requires on-device training using continuous multimodal data.

Unfortunately, existing multimodal sensing systems cannot ad-
dress these challenges collectively. Most previous efforts [6, 32, 34,
35] are focused on a pair of specific sensor modalities, and cannot
be extended to the fusion of other heterogeneous sensor modali-
ties. There are also general multimodal fusion frameworks based
on deep learning [36, 55, 56]. However, they are based on fully
supervised learning approaches, which need to be trained by exten-
sive labeled multimodal data and hence are ill-suited for real-world
HAR applications with only limited data labels. Recently, contrastive
learning [38, 49] has been proposed in the field of self-supervised
representation learning to address the challenge of limited labeled
data. However, they are either developed for HAR tasks with a
single modality [19, 48, 54] or designed for tasks in other domains
with two similar modalities (e.g., different channels of an image in
vision tasks) [4, 22, 50], which cannot be applied for significantly
heterogeneous data modalities such as depth images and inertial
measurements in multimodal HAR applications [33, 34]. Lastly,
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Figure 1: A typical application of Cosmo in multimodal hu-
man activity recognition. The first stage (i.e., contrastive fu-
sion learning) is trained with unlabeled multimodal data on
the cloud, and the second stage (i.e., iterative fusion learning)
is trained with limited labeled data locally.

traditional supervised learning models for multimodal fusion are
typically trained on the cloud due to the high compute overhead
and the need of a large amount of training data [37, 61].

In this paper, we propose Cosmo, a novel system for contrastive
fusion learning with small data in multimodal HAR applications.
Cosmo features a novel two-stage training strategy using both
unlabeled and (limited) labeled data from multiple heterogeneous
sensors. In the first stage, Cosmo employs a novel fusion-based
contrastive learning approach to train the feature encoders using
unlabeled multimodal data. As a result, Cosmo can extract consistent
information that represents the common knowledge shared among
different modalities. In the second stage, a new quality-guided at-
tention mechanism is designed to allow the classifier to capture the
strengths of different modalities based on only limited labeled data,
which explores the complementary information of different modali-
ties. We then propose a novel iterative fusion learning algorithm,
which improves both the accuracy and convergence performance of
the system. As shown in Figure 1, Cosmo naturally enables a cloud-
edge implementation architecture. The first stage is trained on the
cloud with unlabeled multimodal data gathered from multiple users
or public datasets. Then the second stage is trained locally with
limited labeled data, which incurs low compute overhead and pre-
serves user privacy. Cosmo also adapts to dynamic environments by
improving the training accuracy iteratively through a small amount
of data labeled by users locally (e.g., marking the time of having
lunch would automatically label the multimodal data during lunch).

We evaluate the performance of Cosmo extensively on a testbed
of a server and Nvidia Jetson TX2 platforms, using two public
datasets and a new multimodal HAR dataset, which, in total, con-
sist of data from five different sensor modalities (i.e., accelerator,
gyroscope, skeleton points, depth images, and mmWave radar)
and 55 different daily human activities. Our evaluation shows that,
Cosmo delivers an accuracy improvement of 51.61%, 26.73% and
20.90% over the single modal learning, supervised fusion learning
and contrastive learning baseline, respectively, and converges much
faster than conventional supervised fusion learning.

In summary, we make the following key contributions:
• Through a motivational case study based on real-world HAR
datasets, we show that multimodal fusion should leverage both

consistent and complementary information of different modalities
simultaneously, when there exists only limited labeled data.

• We design Cosmo, a novel system for fusing multiple heteroge-
neous sensor modalities in HAR applications with only limited
labeled data. Cosmo effectively explores consistent information
from unlabeled multimodal data through a new fusion-based
contrastive learning approach, and integrates complementary
information from limited labeled data through a novel quality-
guided attention mechanism and an iterative learning algorithm.

• Our evaluation on a cloud-edge testbed using two public datasets
and a new multimodal HAR dataset shows that Cosmo outper-
forms state-of-the-art baselines and converges much faster than
conventional supervised learning approaches.

2 RELATEDWORK
Human Activity Recognition (HAR) has a wide range of appli-
cations such as virtual/augmented reality (VR/AR) [42, 43], smart
home [3, 5], and smart health [13, 18]. Machine learning algorithms
based on handcrafted features [24, 47] and deep neural networks
[25, 54] have been applied to HAR applications. Several recent stud-
ies are focused on leveraging federated learning systems to improve
the performance of HAR while protecting user privacy [39].

Multimodal Sensing for HAR.Multimodal sensing systems
have become prevalent in identifying complex and dynamic human
activities [29, 31, 32, 59]. For example, PDLens [59] utilizes multiple
built-in sensors of a smartphone to monitor a user’s daily activity.
Liu et al. [32] aim to fuse the RFID and depth camera for recogniz-
ing human gestures. However, these approaches are designed for
a fixed pair of specific sensor modalities, thus cannot be extended
to the fusion of other heterogeneous sensor modalities. There are
also general multimodal fusion frameworks based on deep learning
[36, 37, 56]. For example, AttnSense [36] leverages an attention-
based module to dynamically learn the weights for concatenating
the features of different modalities. Most of the previous work in
this area is based on supervised learning, which may fail to adapt
to real-world scenarios where only limited labeled data is available.
To address the challenge of collecting and labeling massive training
data, previous RF sensing approaches [8] exploit the correlations
among online videos and RF signals. Cosmo takes a different ap-
proach by leveraging unlabeled multimodal data that is easier to
obtain to improve fusion performance for HAR applications.

Self-Supervised Multimodal Learning. To address the chal-
lenge of limited labeled data, contrastive multimodal learning [38,
49] has been proposed recently in the field of self-supervised repre-
sentation learning. Most of current approaches are developed with
two similar modalities (e.g., different channels of images in vision
tasks). They either learn a cross-modal embedding space by con-
trasting different modalities [49, 50], or perform mutual clustering
among multimodal features [4, 9, 22, 41], which only captures the
information shared across modalities while failing to fully lever-
age multimodal synergies [33]. In particular, the sensor modalities
become increasingly more heterogeneous (e.g., depth images and
IMU data) in real-world HAR applications. In this work, we pro-
pose a novel fusion-based contrastive learning framework, which is
able to to extract key information from heterogeneous multimodal
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data for efficient fusion. We also explore the strengths of differ-
ent modalities from limited labeled data, and effectively combine
it with information learned from unlabeled data. There are also
contrastive predictive coding methods designed for single-modality
HAR applications that capture the temporal structure of sensor
data [19, 48, 54]. However, they cannot be applied to multimodal
HAR tasks as they do not explore multimodal data fusion during
the unsupervised learning stage.

3 MOTIVATION
In this section, we first compare different supervised learning ap-
proaches using real-world multimodal HAR datasets, and then eval-
uate their performance with limited labeled data. The key insights
from these results motivate the design of Cosmo.

3.1 Understanding the Fusion Performance
In this section, we compare three supervised learning approaches,
including single modal learning (referred to as SingleModal), as
well as two state-of-the-art fusion approaches Deepsense [56] and
AttnSense [36] that are representative fusion approaches in multi-
modal HAR tasks [11, 37, 55]. In Deepsense, features from different
sensor modalities are concatenated together for fusion. InAttnSense,
an attention-based module dynamically learns the weights for con-
catenating features of different sensors.

Specifically, we evaluate the above approaches using 14 subjects’
multimodal data from the public USC dataset [60]. The task is
to classify 12 human activities using the accelerometer (Acc) and
gyroscope (Gyro) data. We use data from ten subjects for training
and the other four subjects for testing. The deep learning model
comprises five CNN layers, two GRU layers, and one fully connected
layer. Each experiment is repeated five times.

3.1.1 Complementary nature of different modalities. Figure 3 shows
the mean testing accuracy of each activity when using Acc-only and
Gyro-only in SingleModal approach. We observe that the accelerom-
eter performs better for recognizing walking-related activities (e.g.,
walking forward, left, right, upstairs, downstairs), while the gyro-
scope outperforms in the remaining activities. It clearly shows the
intrinsic complementary nature of the two sensors, which offers
different strengths in a given activity recognition task and can be
used to improve the fusion performance.

3.1.2 Consistent information across modalities. Figure 2a visual-
izes the features of Acc and Gyro generated by Deepsense using
t-Distributed Stochastic Neighbor Embedding (t-SNE) [52]. Here
different colors represent different activities, while different shapes
of points denote different modalities. We observe that the features
of the two modalities are well aligned and almost symmetrical
along the diagonal. Moreover, the average cosine distance between
Acc and Gyro features generated by Deepsense is 0.7288, which is
smaller than that learned by SingleModal (0.8067). As shown in
[16, 61], the features are more consistent if the averaged distance
between them is smaller. This means that through concatenating
the features from different modalities, Deepsense captures more
consistent information between two modalities, which makes it
more robust to the noisy multimodal data.

(a) Deepsense (�̄� = 0.7288). (b) Attnsense (�̄� = 0.7685).
Figure 2: Visualization of Acc and Gyro features generated by
different fusion approaches. Here �̄� denotes the mean cosine
distance between Acc and Gyro features. Deepsense learns
more consistent information (the features of two modalities
have a smaller mean distance and are more aligned), while
AttnSense combines more complementary information.

Figure 3: Acc outperforms
Gyro in walking-related ac-
tivities while it is the oppo-
site for other activities.

Figure 4: Accuracy compari-
son with different numbers
of labeled samples.

3.1.3 Combining consistent and complementary information. As
shown in Figure 2b, the features of different sensors generated
by AttnSense are less aligned compared with DeepSense in Figure
2a. Moreover, the average distance of Acc and Gyro features in
AttnSense (0.7685) is between those of SingleModal and Deepsense.
This means that, through concatenating the features with differ-
ent weights, AttnSense combines consistent and complementary
information from different modalities [16, 61].

3.2 Impact of Small Data
Labeling multimodal data for HAR tasks is extremely difficult in
real-world settings [23, 37, 46], which poses significant challenges
to supervised learning-based fusion approaches. Here we investi-
gate the performance of the above three supervised learning ap-
proaches with different numbers of labeled samples. The training
data is reduced randomly in the experiments with a balanced class
distribution. The results are shown in Figure 4.

First, the accuracy of all methods drops with less labeled data.
Moreover,Deepsense improves the activity recognition performance
over SingleModal only when there exists enough labeled data (e.g.,
2,000 samples). In particular, when the number of labeled multi-
modal samples is small (e.g., 200), the accuracy ofDeepsense (42.43%)
is even lower than that of Acc-only (44.64 %). This means that
only capturing consistent information is not enough to improve
fusion performance. In this case, AttnSense performs better (48.72%)
through assigning dynamic fusion weights to the input data. That
is, it is beneficial to combine both consistent and complementary
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Figure 5: Cosmo consists of two stages, i.e., contrastive learning on the cloud for capturing consistent information from
unlabeled multimodal data, and supervised learning on edge for combining complementary information from limited labeled
multimodal data, respectively.

information from different modalities. However, the accuracy im-
provement of AttnSense over a single modality is still limited, as
the small amount of labeled multimodal data is insufficient to learn
a robust fusion strategy.

3.3 Summary
We now summarize the analysis on different fusion approaches.

• The consistent information from different data modalities
helps align features, making the fusion more robust to noise.

• The complementary information from different datamodal-
ities, on the other hand, exploits the strength of different
sensors and promotes fusion performance.

• When there exists only limited labeled multimodal data,
both consistent and complementary information should be
learned and leveraged simultaneously to achievemore robust
fusion performance in real-world HAR tasks.

4 SYSTEM OVERVIEW
We now introduce Cosmo, a new system for contrastive fusion
learning with small data in multimodal HAR applications. Moti-
vated by the insights from Section 3, our key idea is to first capture
consistent information from unlabeled multimodal data, and then
iteratively learn complementary information of different sensors
from limited labeled data. We will first discuss the application sce-
narios and then describe the system architecture.

4.1 Application Scenarios
Cosmo is designed for a wide range of applications where multiple
heterogeneous sensors are deployed to track users’ activities in a
continuous and longitudinal manner [12, 28, 59]. For example, in
Alzheimer’s Disease monitoring applications [12], wearables and

smartphone sensors can continuously track the elder’s daily activi-
ties such as sleeping and social interaction, which are important
digital biomarkers [1, 26] for early diagnosis.

We now outline several challenges of such applications. First, the
user data (either unlabeled or labeled) in this application is privacy-
sensitive and usually cannot be uploaded to the cloud. Second, even
when the user data can be shared, labeling such multimodal data is
usually challenging in real-world settings [23, 37, 46]. For example,
data of many sensors such as IMU and radar is not intuitive for
human, making the annotation extremely labor-intensive. Finally,
different users usually yield highly diverse activities and behaviors.
The characteristics of activities for the same user may also change
over time because of a number of reasons, such as the change
of daily routine or progression of the disease. These challenges
together motivate the design of Cosmo.

4.2 System Architecture
Cosmo features a novel two-stage training strategy that can ef-
ficiently learn consistent and complementary information from
unlabeled and limited labeled multimodal data. Here we use the
fusion of a depth camera and wrist-worn wearables in HAR as a
running example to illustrate our design (while Cosmo supports
the fusion of more than two modalities). Figure 5 shows the overall
system architecture of Cosmo.

In the first stage, we design a fusion-based contrastive learning
framework that trains the feature encoder of each modality (e.g.,
depth images and IMU data) to learn consistent information from
unlabeled multimodal data. First, the feature encoders generate the
unimodal features, which will then be transformed to the same
dimension through the projection networks. Second, a fusion-based
feature augmentation module will extensively augment the uni-
modal features to a group of fused features via weighted sum or
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concatenation. Finally, the contrastive learning will bring the fused
features from the same multimodal data sample (denoted as pos-
itive samples) together, while pushing fused features from other
data samples (denoted as negative samples) apart. In this way, the
feature encoders are trained to learn consistent information across
modalities by maximizing the mutual information of features from
different modalities. For example, when fusing a depth image con-
taining the subjects and the motion sensor data from the wearables,
this stage will learn common information that aligns the features of
the depth map (e.g., the bounding boxes of subjects) with features
of wearable data (e.g., motion vectors).

In the second stage, we design an iterative fusion learning ap-
proach to effectively combine the complementary information from
limited labeled multimodal data. First, we will initialize the feature
encoders using model weights trained in the first stage and then
fine-tune them. Second, we design a novel quality-guided attention
fusion module that allows the classifier to capture the complemen-
tary information of different modalities based on only limited la-
beled data, where the data quality of each modality is measured
using unlabeled multimodal data. The complementary information
explores the exclusive and unique contents of different modalities.
For example, when detecting the activities of “having a lunch”, a
depth image will exhibit the sitting postures of subjects while the
wearables can capture the hand motions during eating. Finally, the
feature encoders and classifier will be trained iteratively to gradu-
ally learn the complementary information until convergence. A key
advantage of such iterative learning design is that it addresses the
challenge of exploring complementary information from consistent
features and prevents the model from degrading to the one learned
by conventional supervised learning approaches.

Most multimodal fusion approaches incur high computation
overhead and hence can only be trained on the cloud or powerful
platforms. In contrast, our two-stage training strategy of Cosmo nat-
urally enables a could-edge implementation architecture. The first
stage can be trained on the cloud with large amounts of unlabeled
multimodal data gathered from multiple users or public datasets.
When there is connectivity to the cloud, the model weights of fea-
ture encoders can be downloaded to edge devices. Then the second
stage can be trained locally with limited labeled data. Such a cloud-
edge implementation offers several advantages. First, it only incurs
low computation overhead and hence is affordable for resource-
limited edge devices like Nvidia Jetson TX2 [2]. Second, the labeled
data is kept locally to preserve user privacy. Third, the overall train-
ing performance can be improved iteratively by allowing users to
provide a small number of labels (e.g., marking the time of having
lunch would automatically label the multimodal data during lunch).

5 DESIGN OF COSMO
5.1 Contrastive Fusion Learning
In the first stage, we develop a new contrastive fusion learning ap-
proach to learn representations that capture consistent information
shared between multiple sensory data, only from the unlabeled
multimodal data. We first introduce the main components in our
representation learning framework, and then present the loss func-
tion of contrastive fusion learning.

5.1.1 Representation Learning Framework. In real-worldmultimodal
HAR applications, the modality and dimension of different sensory
data can be very diverse. For example, during one time slot, the IMU
sensor data usually has two dimensions (i.e., time and 9-dimension
vectors) while the depth video has three dimensions (i.e., time and
2D depth images). Therefore, we will first use different feature en-
coders to extract deep unimodal features from different modalities,
and then transform the features to the same dimension through the
projection networks. During contrastive learning on the unlabeled
multimodal data, we aim to train the feature encoders to generate
rich representations that are consistent among different modali-
ties. However, directly contrasting the features from heterogeneous
sensor modalities will fail to fully leverage multimodal synergies
[33]. Therefore, we propose a novel fusion-based feature augmen-
tation module, which extensively augments the unimodal features
to a group of fused features via weighted sum or concatenation.
Next, we introduce the three main components of our contrastive
learning framework respectively.

Unimodal Feature Encoders. As the data of different modali-
ties can be very heterogeneous (e.g., IMU data and depth videos),
we use different feature encoders to extract the unimodal repre-
sentations. Suppose that we have 𝑁 unlabeled multimodal data
samples x = {x𝑖 ,∀𝑖 = 1, ..., 𝑁 }, where x𝑖 = {x𝑖1, x

𝑖
2, ..., x

𝑖
𝑀
} contains

𝑀 (𝑀 ≥ 2) different modalities. Then x𝑖
𝑗
denotes the data of the 𝑗𝑡ℎ

modality in the 𝑖𝑡ℎ multimodal sample. Next we use the 𝑖𝑡ℎ multi-
modal training sample x𝑖 as an example to introduce the function
of each operation. First, the data of different modalities will be sepa-
rately fed into𝑀 unimodal feature encoders (𝑓𝑒𝑛𝑐1 (·), ..., 𝑓𝑒𝑛𝑐𝑀 (·))
to generate𝑀 representation vectors:

z𝑖𝑗 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑓𝑒𝑛𝑐 𝑗 (x𝑖𝑗 )), 𝑗 = 1, ..., 𝑀, (1)

where z𝑖
𝑗
∈ R𝐷 𝑗 is the flattened one-dimensional vector of the

extracted feature from the 𝑗𝑡ℎ sensor modality with a dimension
𝐷 𝑗 . The flatten operation will make it easier to fuse heterogeneous
features from different modalities (which may have two or three
dimensions such as IMU data and depth videos). Moreover, the
unimodal feature encoder can be any off-the-shelf deep learning
models (e.g., convolutional neural network [37] or recurrent neural
network [57]) depending on the sensor modalities. This implies
that our framework is general and flexible to various applications.

Feature Projection Networks. As the features of different
modalities may have different dimensions, the projection networks
(ℎ1 (·), ..., ℎ𝑀 (·)) will then map the unimodal features to the same
dimension using multi-layer perceptions:

r𝑖𝑗 = 𝑁𝑜𝑟𝑚(ℎ 𝑗 (z𝑖𝑗 )), 𝑗 = 1, ..., 𝑀. (2)

This will ensure that the output features have the same dimen-
sion 𝐷 and lie on the unit hypersphere after normalization, i.e.,
{r𝑖

𝑗
,∀𝑗 = 1, ..., 𝑀} ∈ R𝐷 (𝐷 is usually set to be 128 in our exper-

iments). Therefore, the projection network can unify the hetero-
geneous inputs from different modalities for the next-step fusion
operations (e.g., summation or concatenation). As in other self-
supervised learning approaches [38, 49], we will discard the projec-
tion networks at the end of contrastive learning and only keep the
feature encoders in the second stage of supervised learning.
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Fusion-based Feature Augmentation. Based on the projected
features {r𝑖

𝑗
,∀𝑗 = 1, ..., 𝑀} from sample x𝑖 , we now augment a

group of positive features for the subsequent contrast learning.
Instead of directly contrasting features of 𝑀 different modalities
[19, 49], in Cosmo, we propose to contrast various fused features of
different modalities to extract consistent information for efficient
fusion. Specifically, we randomly generate 𝑃 fusion-based feature
augmentations as {v𝑖

𝑘
,∀𝑘 = 1, ..., 𝑃} from sample x𝑖 . Each of them

represents a different fusion combination of the sensor features
and contains some subset of information in the original data sam-
ple. Here 𝑃 is the total number of augmented features, which is
independent of the number of sensor modalities𝑀 . For example, if
there are three modalities to be fused, we can augment ten fused
features with different combinations of them. Specifically, the 𝑘𝑡ℎ
fused feature augmentation of the 𝑖𝑡ℎ data sample is given by:

v𝑖
𝑘
= 𝐴𝑢𝑔(r𝑖1, ..., r

𝑖
𝑀 ) =

𝑀∑︁
𝑗=1

𝛼 𝑗𝑘r
𝑖
𝑗 , 𝑘 = 1, ..., 𝑃, (3)

where 𝛼1𝑘 , ..., 𝛼𝑀𝑘 ∈ [0, 1] are randomly sampled and
∑𝑀

𝑗=1 𝛼 𝑗𝑘 = 1.
As shown in Figure 6, the augmented features represent different
weighted combinations of the sensor modalities. The weighted
combination of features from different modalities is a representa-
tive method for dynamic fusion [36]. Through contrastive learning
among these features in a unified fusion space, the feature encoders
will generate features invariant to different fusion schemes. More-
over, the augmentation of features can be designed according to
specific applications and sensor modalities. For example, we may
set a larger range of sampling weights (e.g., 0.1-0.9) for more hetero-
geneous modalities (e.g., depth images and IMU data), while setting
a smaller sampling range (e.g., 0.4-0.6) for similar modalities (e.g.,
acc and gyro data). We then normalize the augmented features to
lie on the unit hypersphere, which enables using an inner product
to measure distances of features during contrastive learning.

5.1.2 Contrastive Fusion Loss. As mentioned before, we aim to
train the feature encoders to generate robust representations that
are invariant to different fusion schemes. Therefore, the goal of con-
trastive fusion learning is to push the augmented features from the
same original multimodal sample closer, while separating the aug-
mented features from different original samples. We now introduce
the contrastive fusion loss designed to achieve this goal.

Through the above representation learning framework, we will
augment a mini-batch of N training samples to 𝑃 ×𝑁 fused features.
Let 𝑠 ∈ S ≡ {1, 2, ..., 𝑃 × 𝑁 } be the index of an arbitrary augmented
feature, and let 𝑝 ∈ 𝑃 (𝑠) be the index of the other augmented
features originating from the same source sample. Then the feature
with index 𝑠 is called the anchor, and the feature with index 𝑝 is
called positive features. The augmented features from other data
samples serve as negative features. Here 𝑃 (𝑠) is the set of indices of
all positive features of 𝑠 in the minibatch and distinct from 𝑠 . The
contrastive fusion loss can be defined as:

L𝑐𝑜𝑛𝑓 =
∑︁
𝑠∈S

−1
|𝑃 (𝑠) |

∑︁
𝑝∈𝑃 (𝑠 )

𝑙𝑜𝑔
𝑒𝑥𝑝 (v𝑠 · v𝑝/𝜏)∑

𝑎∈S\{𝑠 } 𝑒𝑥𝑝 (v𝑠 · v𝑎/𝜏)
. (4)

Here v𝑠 is the feature output of the fusion-based augmentation mod-
ule, and the symbol · denotes the inner product of feature vectors.

Figure 6: Illustration of fusion-based contrastive learning
on the normalized feature space. The positive features are
generated by sampling different weighted combinations of
modalities from the same multimodal sample, while the neg-
atives are augmented from the remaining multimodal sam-
ples in the batch. The contrastive fusion loss contrasts the
positives to be closer to each other and pushes away the neg-
ative features.

Parameter 𝜏 ∈ R+ represents the temperature used to adjust the
impact of different samples [50], where an appropriate temperature
can help to improve the performance of representation learning
(we use 𝜏 = 0.07 as in previous contrastive learning studies). Note
that for each anchor 𝑠 , there are |𝑃 (𝑠) | = 𝑃 − 1 positive pairs and
𝑃 × (𝑁 − 1) negative pairs. The denominator has 𝑃 × (𝑁 − 1) terms
(including the positive and negatives). Therefore, minimizing the
contrastive fusion loss in Eqn. 4 will bring the positive features
together and push the negatives apart.

Learning Consistent Information. As shown in Figure 6, the
designed contrastive fusion loss will contrast the set of all fused fea-
tures from the same multimodal sample as positives, while against
the negatives from the remaining samples of the batch. This will
result in an embedding space, where features with different fusion
schemes from the same multimodal samples will be more closely
aligned. Moreover, minimizing the contrastive loss will maximize
the lower bound of mutual information among positive features
[49]. Therefore, as introduced in Section 3, the feature encoders
will learn more consistent information that extracts the common
features from the unlabeled multimodal data.

The advantages of our contrastive fusion learning design are
as follows. First, the feature encoders will be trained to generate
unimodal features invariant to different fusion schemes, which will
enable good adaptation performance for the attention-based fusion
in Section 5.2. For example, in the fusion of depth videos and mo-
tion data, the attention module may give a higher weight to depth
videos for the activity of “falling” while a lower one for “running”.
In this case, the features are robust to be fused with different at-
tention schemes. Second, our experiments show that based on the
pre-trained feature encoders, the fusion learning on limited labeled
multimodal data will converge much faster than conventional su-
pervised fusion learning. Third, the learned representations will
contain more consistent information across different modalities
that is robust to noisy multimodal data. For example, the data of
the activity “having a lunch” from a single modality like the IMU
or the depth can be very noisy, while it will be easier to recognize
through combining the common features of the two modalities.
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5.2 Iterative Fusion Learning
In the second stage, we aim to explore the complementary infor-
mation of different sensor modalities from the limited labeled data,
and carefully combine it with the consistent information learned on
the unlabeled multimodal data. With such an approach, the trained
model will be not only robust to noisy multimodal data but also
can leverage the strength of different sensors to improve the fusion
performance. We first introduce a novel quality-guided attention
module for feature fusion with limited labeled data. Then we pro-
pose an iterative fusion learning approach to effectively combine
the consistent and complementary information.

5.2.1 Quality-guided Attention Fusion. In multimodal human ac-
tivity recognition, different sensors may carry different amounts
of information to a specific task, due to various reasons such as
the type of the sensing signal, the quality of hardware, the device
placement, as well as the ambient noise and settings [11, 55]. An
ideal activity recognition approach should be able to capture the
variance in both data quality and contributions among different
sensor modalities, and rely on more informative ones to promote
the fusion performance. To this end, we design a quality guided
attention fusion module to dynamically give different attentions to
the sensor features generated by the feature encoder networks.

Specifically, the unimodal feature encoders will be initialized us-
ing the model weights trained in the first stage, which will generate
deep features (z𝑖1, ..., z

𝑖
𝑀
) from different modalities. Then we will

use a soft-fusion-based attention module [11] to capture the com-
plementary information of different modalities. The fusion-based
attention structure can be formalized as follows:

𝜇j = 𝑡𝑎𝑛ℎ(W · zj + b), (5)

𝛽 (𝐴𝑡𝑡𝑛) 𝑗 =
𝑒𝑥𝑝 (𝜇j · zj)∑
𝑗 𝑒𝑥𝑝 (𝜇j · zj)

, 𝑗 = 1, ..., 𝑀. (6)

Herewe usemulti-layer perceptions to get 𝜇j from zj. And 𝛽 (𝐴𝑡𝑡𝑛)1,
..., 𝛽 (𝐴𝑡𝑡𝑛)𝑀 are weights of different modalities generated by the
attention module. Although the attention module can capture the
strength of different modalities, it may not be effective when the
labeled multimodal data is limited. In particular, when the attention
module is trained with only a very small amount of labeled data, the
generated weights may include interfering noises and dynamics,
which will significantly affect the fusion performance. For exam-
ple, the depth images generally contain more useful information
than IMU data in HAR tasks, while the attention module may give
a lower weight to depth if trained from a very small amount of
labeled data. Therefore, besides the weights learned from limited
labeled data, we also incorporate another set of fusion weights by
evaluating the data quality from large amounts of unlabeled data.
Specifically, we exploit the clusterability of unlabeled data to assess
the quality of a single modality among all modalities. The rationale
is that the clusterability of latent spaces is strongly correlated with
their resulting classification accuracy [7, 21]. Therefore, when the
data of one modality has a larger tendency to be clustered, it will
contribute more useful information to a classification task.

We quantify the clustering tendency of unlabeled unimodal data
using theHopkins statistic [15], which is a statistical metric between
0 and 1. A higher Hopkins statistic means stronger data cluster-
ability. Moreover, to further reduce the impact of other dynamic

(a) IMU (𝑞1 = 0.26). (b) Depth (𝑞2 = 0.74).
Figure 7: Measuring data quality from unlabeled data. 𝑞 𝑗 ( 𝑗 =
1, 2) is the calculated quality weight. Compared with IMU,
the depth data has a higher clusterability (0.8513), and the
optimal number of clusters (24) is closer to the number of
total classes (27).

factors (e.g., subject variance, environments) on the clusterability
measurement, we also measure the absolute difference between the
number of clusters and the ground truth. Specifically, the number of
clusters is obtained by the one that has the highest Silhouette score
(a metric indicating the goodness of a clustering result) [45] after
Kmeans clustering [20]. Suppose that the Hopkins statistic of the
𝑗𝑡ℎ modality is 𝐻 (x𝑗 ), and the absolute value of difference between
the optimal number of clusters and the number of classes is 𝑐 𝑗 , then
the quality of the 𝑗𝑡ℎ modality is measured by 𝑞 𝑗 = 𝐻 (x𝑗 )/𝑐 𝑗 . Then
the quality weight of the 𝑗𝑡ℎ modality is given by normalizing the
quality index among all modalities as 𝛽 (𝑄𝑜𝑀) 𝑗 = 𝑞 𝑗/

∑𝑀
𝑗=1 𝑞 𝑗 .

Figure 7 shows an example of data quality measurement on
the unlabeled multimodal data from the UTD dataset (see Section
6), where the data is visualized using t-SNE. The task here is to
recognize 27 activities using IMU and depth data. Compared with
IMU, the depth data has a higher clusterability (0.8513), and the
optimal number of clusters (24) is closer to the number of total
classes (27). This means the depth data has better quality than IMU
in the HAR task. As a result, the calculated quality weight for depth
is 0.74, which is larger than that of IMU (0.26).

We then combine the weights generated by the attention module
and the quality weights calculated using the unlabeled data as:

𝛽 𝑗 = (1 − 𝜆)𝛽 (𝐴𝑡𝑡𝑛) 𝑗 + 𝜆𝛽 (𝑄𝑜𝑀) 𝑗 . (7)

Here 𝜆 is the hyper-parameter to adjust the impact of quality-based
weights, which can be tuned according to different datasets and set-
tings. For example, when the labeled data is very limited and noisy,
we may give more confidence to the large amount of unlabeled mul-
timodal data and thus choose a larger 𝜆. Next we normalize the com-
bined weights 𝛽 𝑗 among the𝑀 modalities using 𝛽 𝑗 = 𝛽 𝑗/

∑𝑀
𝑗=1 𝛽 𝑗 .

Then based on the quality-guided attention weights (𝛽1, ..., 𝛽𝑀 ), we
have the following two types of fusion mechanisms for applications
with different sensor modalities.

• For sensors of similar modalities (e.g., motion sensors like
accelerator and gyroscope) and when the unimodal features
have the same dimension, we use weighted sum to estimate
the contribution of sensors:

v𝑖 = 𝑆𝑢𝑚𝐴𝑡𝑡𝑛(z𝑖1, ..., z
𝑖
𝑀 ) =

𝑀∑︁
𝑗=1

𝛽 𝑗 z𝑖𝑗 (8)
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• For sensors of extremely diverse modalities (e.g., the depth
camera and IMU) or when the unimodal features have differ-
ent dimensions, we useweighted concatenation to selectively
leverage the extracted features:

v𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝐴𝑡𝑡𝑛(z𝑖1, ..., z
𝑖
𝑀 ) = [𝛽1z𝑖1, ..., 𝛽𝑀z𝑖𝑀 ] (9)

Through combining the weight of quality calculated from un-
labeled multimodal data, the attention-based fusion module can
yield more robust weighted fusion. As a result, features from each
modality can offer different strengths for the HAR task. For exam-
ple, in the fusion of depth cameras and wearables, the attention
module would give higher weights to depth features for the ac-
tivity of “falling” while giving more attention to IMU features for
“running”. In this way, the model can leverage the complementary
nature of sensor modalities to promote the fusion performance even
trained with limited labeled multimodal data. In the implementa-
tion, the data quality 𝛽 (𝑄𝑜𝑀) 𝑗 is measured using a large amount
of unlabeled multimodal data on the cloud and then sent to the
edge, while the attention module is trained using limited labeled
multimodal data on the edge to generate the attention weights
𝛽 (𝐴𝑡𝑡𝑛) 𝑗 . Then the two sets of weights are combined using Equ.(7).
Therefore, the quality-guided attention mechanism will not intro-
duce high overhead in the supervised training on the edge, which
is also demonstrated in our experimental results in Section 6.6.

5.2.2 Iterative Training between Encoders and Classifiers. As dis-
cussed in Section 3, the consistent and complementary informa-
tion should be utilized simultaneously during the fusion process.
Through contrasting the fused features, the feature encoders are
trained to capture consistent information across the sensor modali-
ties. Thus the output representations will actually filter out valuable
complementary information, which impedes us from exploring
strengths of different sensors. Moreover, if we simply train the
encoders and classifier together, the whole model may forget the
consistent knowledge inherited in the pre-trained feature encoders
and degrades to conventional supervised fusion learning. Therefore,
given the feature encoders pre-trained in the first stage, the chal-
lenge is how to incorporate it with the attention-based classifier in
the supervised learning stage.

To tackle this challenge, Cosmo features a novel iterative learning
approach to effectively combine the complementary and consistent
nature of different sensor modalities based on limited labeled data.
As shown in Figure 8, the objective of this iterative training is to
explore complementary information from labeled multimodal data
while avoiding overfitting on sensor-specific features. Specifically,
we first initialize the feature encoders using the model weights
trained in the first stage (discarding the projection network and
augmentation modules), and randomly initialize the classifier. Sec-
ond, the feature encoders will be fine-tuned for 𝑇𝑖𝑡𝑒𝑟 epochs with
the classifier fixed, where the hyper-parameter 𝑇𝑖𝑡𝑒𝑟 denotes the
epochs of iterative training. Third, it rolls over to train the classifier
for 𝑇𝑖𝑡𝑒𝑟 epochs with the encoders fixed to balance the consistent
and complementary information. This procedure will run until the
preset epoch number is reached.

Figure 9 shows the performance comparison with or without
iterative fusion learning during the supervised learning process.
We can see that with the iterative training, the training loss curve

Figure 8: Illustration of iterative fusion learning. Through it-
erative training between the feature encoders and attention-
based classifier, the complementary information from la-
beled data will be gradually added without forgetting the
consistent features.

(a) Training Loss. (b) Testing Accuracy
Figure 9: Training loss and testing accuracy during super-
vised training with or without iterative training.

exhibits a square-wave behavior in every 𝑇𝑖𝑡𝑒𝑟 epochs. This is be-
cause the model is trained to gradually add the complementary
information, which leads to a better test accuracy, as shown in
Figure 9b. Moreover, this mechanism will not incur more training
delays than conventional supervised training, as the total number
of training epochs is the same. In our experiments, the choice of dif-
ferent iteration epochs 𝑇𝑖𝑡𝑒𝑟 will slightly affect the performance of
learned models, which varies among different datasets and settings.
Therefore in real-world implementations of Cosmo, we can use a
small validation dataset to determine the optimal iterative epochs.

5.3 System Implementation
5.3.1 Cloud-edge implementation. The two-stage training strategy
of Cosmo naturally enables a could-edge implementation architec-
ture. The first stage can be trained on the cloud with unlabeled
multimodal data gathered from multiple users or public datasets.
The second stage can be trained locally with a small amount of
labeled data, which only incurs low compute overhead. We imple-
ment Cosmo with Python and PyTorch1. The first stage of Cosmo
is run on a server with 8 NVIDIA GEFORCE TITAN Xp GPUs, 256
GB RAM, and two 16-core Intel Xeon E5-2620 (2.10GHz) CPUs. The
second stage is run on NVIDIA Jetson TX2 [2].

5.3.2 Baselines. In our experiments, we compare the performance
of Cosmo with the following baselines.
SingleModal, which predicts human activities using labeled data
of a single modality.
DeepSense[56], which is one of the state-of-the-art supervised
learning approaches for multimodal HAR, where features from
different sensor modalities are concatenated together for fusion.
1The code is available at https://github.com/xmouyang/Cosmo.
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AttnSense [36],which is an attention-based supervisedmultimodal
fusion approach that dynamically assigns weights to features of
different modalities before fusion.
Contrastive Predictive Coding (CPC) [19], which is a state-
of-the-art contrastive learning approach designed for HAR with
IMU data. CPC performs unsupervised learning by capturing the
temporal structure of sensor data.
Contrastive Multi-view Learning (CMC) [49], which is a state-
of-the-art contrastive learning approach designed for multi-view
(e.g., RGB, depth) computer vision tasks. This approach trains the
feature encoders by directly contrasting features of different modal-
ities from the unlabeled data.

5.3.3 Configurations. For the feature encoders, we use CNN layers
to extract deep features and plus RNN layers to capture the time-
series properties. Here 2D-CNN is used for inertial data and 3D-
CNN is used for skeleton, depth and radar data, and multi-layer
perceptions are used for the classifier. The learning rate and batch
size are set as 0.01 and 64 for contrastive learning and as 0.001 and
16 for supervised learning. Each experiment is repeated five times.
To ensure a fair evaluation, all baseline models are trained with the
same hyper-parameters and labeled set. Cosmo, CPC and CMC are
trained with the same unlabeled set.

6 EVALUATION
6.1 Datasets
We evaluate the performance of Cosmo using two public datasets
and a new multimodal HAR dataset collected by ourselves in real-
world settings2. Table 1 shows the summary of the three datasets.
The reasons for using the datasets are as follows. The USC dataset
[60] has a large number of samples, which can be used to evaluate
performance with various settings of labeled and unlabeled data.
The UTD dataset [10] is a commonly used multimodal dataset
that collects data of 27 various activities. Compared with the USC
dataset, our dataset provides a richer combination of modalities,
including RGB, depth, IMU, and mmWave radar. In addition, our
dataset involves higher user-level feature diversity (e.g., 30 subjects)
than the UTD dataset (only 864 samples from 8 subjects).
USC dataset [60]. This dataset comprises data of a 3-axis accelera-
tor and 3-axis gyroscope from 14 users performing 12 activities (e.g.,
sitting, walking). The sampling rate of the two sensors is 100 Hz.We
choose a 2-second time window that generates a 600-dimensional
vector for data of each modality. We use data from 10 subjects for
training (split as labeled and unlabeled data) and data from the other
four subjects for testing. Although the two sensors have a relatively
small modality gap, they still have complementary properties in
HAR tasks, as shown in Section 3.
UTD dataset [10]. This dataset contains data of 27 actions (e.g.,
waving, arms crossing) collected from 8 subjects, and four modali-
ties (RGB, depth, skeleton, and inertial measurements). Due to the
small amount of data (864 samples in total), in this paper, we use the
skeleton and IMU data with a relatively low dimension compared
with RGB and depth to avoid overfitting on the training set. The
skeleton contains 3D positions of 20 joints, and the inertial mea-
surements include 3-axis acceleration and 3-axis rotation signals.

2All the data collection was approved by IRB of the authors’ institution.

Dataset Modality Activity Subject Samples
USC Acc, Gyro 12 14 38312
UTD IMU, Skeleton 27 8 864

Self-Collected IMU, Depth, Radar 14 30 3434
Table 1: Summary of the three multimodal datasets.

(a) Experiment Setting. (b) Collected Data.
Figure 10: The setting and data of the multimodal HAR
dataset collected by ourselves.

The sampling rate of the skeleton and inertial data is 30 Hz and 50
Hz. The data from six subjects is used for training, and data from
the other two subjects is used for testing.
Self-collectedmultimodal HAR dataset.We collect a real-world
multimodal HAR dataset in a sitting room setting as shown in Figure
10a. Our new dataset includes data from four different modalities
(RGB, depth, IMU, and mmWave radar), 30 subjects and 14 activi-
ties. The activities include: sitting, pacing, lying, jumping, throwing,
picking up, rummaging, stomping, hand-waving, falling, squatting,
kicking, hand shaking, and thumping the cabinet. Some activities
like “hand shaking” involve two people. During the recording of
the dataset, we instructed the subjects to freely perform these ac-
tivities, where we did not fix the order or frequency of performing
such activities. We note that it is extremely challenging to collect
multimodal HAR datasets under fully uncontrolled settings. One
of the major challenges in collecting such data is that sensors (e.g.,
depth/radar) have very limited coverage [10, 46]. For example, in
order to capture the subjects in the range of the sensors, we can
only collect short-term HAR data with limited types of events in
typical living environments (e.g., a bedroom), which is consistent
with our settings. The total period of collected raw data from 30
subjects is about 20 hours, where the sampling rate of RGB-D cam-
era, IMU, and radar is 20Hz, 100Hz, and 15 Hz, respectively. We
synchronize the data of four modalities through a uniform global
timestamp and label the data using the RGB images3. Then we
removed incomplete modalities or invalid activity data, and split
it into 2-second recordings, which follows the input settings of ex-
isting deep learning-based HAR approaches [19, 48, 54]. Moreover,
we preprocess the data to a fixed dimension [40, 480, 640], [200, 9]
and [30, 2, 16, 32, 16] for IMU, depth and radar, respectively. We
finally obtained 3,434 snippets multimodal samples after data clean-
ing and pre-processing. Figure 10b visualizes an example of the
collected multimodal data, where the data from different modalities
is very heterogeneous, making the fusion very challenging in HAR
tasks. We use data from 25 subjects for training and data from the
remaining five subjects for testing.
3Note that we use the RGB images only for labeling but do not in the evaluation, as it
is privacy-sensitive for HAR applications.
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(a) USC (b) UTD (c) Self-collected
Figure 11: Accuracy comparison with different amounts of labeled data. Cosmo consistently outperforms other baselines, and
can achieve comparable accuracy of AttnSense (with 100% labeled data) with only a small portion of labeled data.

Dataset USC UTD Self-collected
Labeling rate 1% 5% 2%

Labeled training data 200 27 56
Testing data 2000 216 560
SingleModal 0.4464 / 0.3839 0.2279 / 0.4008 0.2643 / 0.4849 / 0.1142
DeepSense 0.4243 0.3348 0.4726
AttnSense 0.4872 0.2930 0.3631
CMC 0.5125 0.5062 0.4214
Cosmo 0.6450 0.6093 0.6304

Table 2: Accuracy comparison on three real-world multi-
modal datasets with limited labeled data.

6.2 Accuracy on Different Datasets
6.2.1 Overall performance on limited labeled data. We first evalu-
ate the accuracy performance of different approaches on the three
datasets with limited labeled data4. Table 2 shows the mean ac-
curacy with 1%, 5%, and 2% labeling rate for the USC, UTD, and
self-collected dataset, respectively. The labeling rate denotes the
percentage of labeled multimodal samples in all training samples.
In our experiments, the number of labeled training samples is very
small (i.e., 200, 27, and 56 for the three datasets, respectively). This
setting reflects the practical challenge that the labels of activity
data are hard to obtain in real-world HAR applications. First, Sin-
gleModal on all HAR tasks has extremely low accuracy due to the
limited labeled data. Deepsense and AttnSense provide only slightly
accuracy improvement or even perform worse than SingleModal
(e.g., in UTD dataset, 0.2930 mean accuracy for AttnSense while
0.4008 for Skeleton-only). Moreover, the accuracy improvement of
CMC is limited as it does not fully leverage multimodal synergies.
Cosmo shows significant accuracy improvement with limited la-
beled multimodal data, e.g., outperforms by 38.14%, 20.93 %, 27.45%,
31.63 %, and 10.31% over IMU-only, Skelton only, DeepSense, At-
tnSense, and CMC on the UTD dataset, respectively.

6.2.2 Different amounts of labeled data. We then compare the ac-
curacy performance with different amounts of labeled data, where
we fix the amount of total training data. The results are shown in
Figure 11. First, all approaches tend to have a higher recognition
accuracy with more labeled data, and Cosmo consistently outper-
forms other baselines in various settings. Second, the performance
improvement of Cosmo is more significant when with a very small
amount of labeled data. For example, for the self-collected dataset

4As shown in Section 6.1, the training and testing data comes from different subjects.

Figure 12: Accuracy of Cosmo with different amounts of
unlabeled data. Values in X-axis are #𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑑𝑎𝑡𝑎

#𝐿𝑎𝑏𝑒𝑙𝑒𝑑 𝑑𝑎𝑡𝑎
.

Figure 13: Accuracy with labeled data from target subjects.

with only 56 labeled training samples, Cosmo outperforms Single-
Modal, DeepSense, AttnSense, and CMC by 51.61%, 15.77%, 26.73%,
and 20.90%, respectively. Third, compared with CPC on the USC
dataset, Cosmo is more efficient in supervised learning when adding
more labeled samples. For example, the accuracy improvement of
Cosmo over CPC increases from 5.94% to 13.45% when the labeling
rate changes from 1% to 20%. Moreover, Cosmo can achieve compa-
rable accuracy of AttnSense with all labeled data (the red line in
Figure 11), when trained with unlabeled and only a small portion of
labeled data, e.g., 20%, 40% and 20% labeled data for the USC, UTD
and self-collected dataset, respectively.

6.2.3 Different amounts of unlabeled data. We then fix the number
of labeled samples (the same numbers in Table 2) and evaluate
the performance of Cosmo with different amounts of unlabeled
training data. The results are shown in Figure 12. We observe that
the accuracy of Cosmo increases with a larger amount of unlabeled
data, which means that Cosmo is able to effectively explore useful
knowledge for fusion from unlabeled multimodal data.

6.2.4 Performance with labeled data from target subjects. In Section
6.2.1 to 6.2.3, the labeled training data and testing data come from
different subjects, which may contain large domain gaps. Figure 13
compares the accuracy of Cosmo when the second stage is trained
with labeled data from testing subjects (w. target) or from other
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Figure 14: Convergence comparison on limited labeled data.
Cosmo converges faster than supervised learning baselines.

subjects (w/o target) over the three datasets. We observe that the
accuracy increases significantly when the labeled training data
comes from the target subjects. For example, Cosmo can achieve
93.4% mean accuracy with only 280 labeled training samples from
the testing subjects on the self-collected multimodal HAR dataset.

6.3 Convergence Performance
In the cloud-edge architecture of Cosmo, the second stage is trained
on edge using labeled multimodal data. As the edge devices usually
own limited computation resources, the supervised training should
be more efficient. Here we investigate the convergence performance
of Cosmo on the three multimodal datasets when training with
limited labeled data (the same setting as 6.2.1).

The results are shown in Figure 14. Compared with the super-
vised learning-based fusion approaches DeepSense and AttnSense,
Cosmo converges much faster and only needs about 30 to 50 epochs
of training to achieve the highest testing accuracy. The reason is
that Cosmo is trained based on the feature encoders pre-trained on
the large amounts of unlabeled multimodal data and features an
iterative training strategy in the second stage, which enables fast
adaptations on the limited labeled data.

6.4 Understanding Cosmo’s Performance
In this section, we perform ablation study and show the intermedi-
ate results to understand the effectiveness of Cosmo. We show the
testing results of the UTD dataset with 5% labeling rate, since the
results on the other two datasets are similar.

6.4.1 Ablation study. Figure 15a compares the mean accuracy with
different design components of Cosmo. Here we evaluate the impact
of three components, including contrastive fusion learning (denoted
as C1), iterative fusion learning (denoted as C2) and quality-guided
attention modules (denoted as C3). Compared with AttnSense, the
results with different components of Cosmo all show significant
accuracy improvement (i.e., over 20%). Moreover, The mean accu-
racy increases with more components added, which validates the
effectiveness of different components in Cosmo’s design.

6.4.2 Extracted information. We then show the intermediate re-
sults generated by Cosmo in Figure 15b. In the left figure, we plot
the normalized mean distance between IMU and skeleton features
generated by Cosmo, which decreases during contrastive fusion
learning and remains almost unchanged during supervised learning.
Moreover, the mean distance between features of two modalities
generated by Cosmo (0.7028) is smaller than that learned by Sin-
gleModal (0.7981), which means Cosmo can learn more consistent
information among different modalities [16, 61]. In the right figure,

(a) Ablation Study. (b) Extracted Information.
Figure 15: Understanding Cosmo’s Performance.

Figure 16: Accuracy of Cosmo under different settings.

we plot the mean fusion weights of skeleton across different activi-
ties generated by the quality-guided attention module of Cosmo.
We observe that when the accuracy of skeleton for recognizing one
activity is larger than IMU, the weight of skeleton will be higher
(e.g., 0.722 for the activity “push”) and vice versa. This shows that
Cosmo can capture the complementary information of different
modalities through leveraging different strengths of modalities.

6.5 Micro-benchmark Performance
In this section, we perform sensitivity analysis of Cosmo under
various system settings. The data settings are the same as Sec. 6.4.

6.5.1 Different weight sampling schemes. Wefirst evaluate the accu-
racy with different sampling ranges of IMU weight in fusion-based
feature augmentation. The weight of skeleton is one minus the sam-
pled IMU weight. The results are shown in Figure 16(a). We observe
that generally, the accuracy decreases with a smaller range of sam-
pling weights (e.g., 60.93% for sampling in [0.1-0.9] v.s. 53.48% for
sampling in [0.4-0.6]). This means that by pushing the positive fea-
tures with more biased fusion together, the feature encoder is able
to learn representations that contain more consistent information,
which finally improves fusion performance.

6.5.2 Different iterative epochs. In this experiment, we study the
impact of the iterative epoch 𝑇𝑖𝑡𝑒𝑟 (in iterative fusion learning)
on the accuracy performance. The results are shown in Figure
16(b). We observe that the setting of 𝑇𝑖𝑡𝑒𝑟 = 5 will result in the
best accuracy performance, compared with other values as well as
that of directly supervised training (i.e., 0 epoch). Furthermore, we
found that the optimal iterative epoch varies with different datasets.
Therefore in real-world implementations of Cosmo, we can use a
small validation dataset to determine the optimal iterative epochs.

6.5.3 Different batch sizes in contrastive learning. We further in-
vestigate the performance of Cosmo with different batch sizes in
contrastive fusion learning. Most of the previous contrastive learn-
ing studies benefit from a larger batch size during training [49, 50].
However, as shown in Figure 16(c), Cosmo achieves good perfor-
mance even with a small batch size (i.e., 16 or 32). The reason is that
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Approach Label rate Cosmo Stage 1 Cosmo Stage 2 DeepSense AttnSense

Time (min) 1% 101.19 25.93 38.38 62.52
2% 90.13 49.87 74.42 120.98

Energy (KJ) 1% 7286.07 21.34 30.99 51.71
2% 6489.70 40.35 60.90 98.58

Table 3: Training overhead. Thefirst stage of Cosmo is trained
on the server. The others are trained on Jetson TX2.

(a) Accuracy. (b) Energy and time.
Figure 17: Inference performance on Jetson TX2.

Cosmo augments multiple positive features (e.g., nine positives for
the range of [0.1, 0.9]) from the same multimodal sample. Therefore,
Cosmo can learn richer representations from the fusion-based aug-
mented features. Moreover, the accuracy slightly decreases with
larger batch sizes, which may be due to that more diverse negative
samples increases the difficulty of convergence.

6.6 System Overhead
In this section, we evaluate the training and inference overhead
of Cosmo using the multimodal dataset collected by ourselves. We
run contrastive fusion learning of Cosmo on a server, and run the
supervised learning of Cosmo and baselines on NVIDIA Jetson TX2.

6.6.1 Training Overhead. Table 3 shows the training performance
of different approaches. For the supervised training on edge, Cosmo
(stage 2) needs less time and power consumption (e.g., about 26
minutes for training with 1% labeled multimodal data) compared
with Deepsense and AttnSense. The reason is that based on the pre-
trained feature encoders in contrastive learning, Cosmo converges
much faster (i.e., only 50 epochs) on the labeled multimodal data.
Therefore, Cosmo on edge only incurs low computation overhead
and hence is affordable for resource-limited edge devices.

6.6.2 Inference Performance. Figure 17 shows the results of infer-
ence performance with 2% labeled data, where the time and power
is the mean value for inferring one sample (2-second multimodal
readings) on Nvidia Jetson TX2. We observe that Cosmo has a sim-
ilar inference overhead as Deepsense and AttnSense. Specifically,
the inference time of Cosmo for predicting with a 2-second sam-
ple including Depth, IMU, and Radar data is less than 0.4s, which
can achieve multimodal HAR in real-time. Moreover, Cosmo has
a higher accuracy performance (i.e., 60.42%) than Deepsense (i.e.,
47.26%) and AttnSense (i.e., 36.31%) on the noisy multimodal data.

7 DISCUSSION
Impact of practical factors. Here we discuss the impact of several
practical factors on the performance of Cosmo. First, in real-world
applications where the sensor data is continuously collected, we can
simply remove the irrelevant data through some filtering techniques

[14, 44]. Then the data can be split using sliding windows (e.g., one
or two seconds). In this case, Cosmo can be adopted by feeding
the split multimodal data into the deep neural networks. Second,
for recognizing the activities with different durations, Cosmo can
incorporate exiting techniques [30] such as adaptive time windows
according to the characteristics of different activities. Third, to
handle the misalignment of multimodal data introduced by time
synchronized errors of sensors, Cosmo can leverage the consistent
information across the features of different modalities to align
the multimodal data stream. For example, we can maximize the
correlation of unimodal features to find the optimal alignment.
Lastly, to adapt to different environmental conditions, the quality-
guided attention module in Cosmo can dynamically assign weights
to different modalities in the presence of environmental variations.
For example, when the subjects are not in the scene of the depth
camera, a larger weight will be given to the IMU data from the
smartwatch.

Future work. Here we discuss several extensions of this work.
First, we will investigate the efficient end-to-end implementation
of Cosmo. For example, we will study how to cache data from
different sensors to enable faster convergence for the training of
the second stage in Cosmo. Moreover, we will study how to reduce
the inference overhead of Cosmo through dynamic sensor selection
[27]. For example, if the fusion weight of one sensor is smaller than
a threshold (e.g., 0.1) for a long period, it means this sensor does not
contribute much to the specific HAR task. We will then discard its
sensor data to reduce the inference latency while maintaining the
accuracy performance. Second, we will study how to incorporate
the federated learning paradigm [39, 40, 51] to further improve the
performance of Cosmo while protecting user privacy. For example,
each node in federated learning will run the first stage of Cosmo
using unlabeled multimodal data. Then the trained feature encoders
can be transferred to the server for aggregation using federated
unsupervised learning techniques [58]. After federated training of
the feature encoders, the node can run the second stage of Cosmo
using limited labeled data to train the classifier.

8 CONCLUSION
This paper proposes Cosmo, a new system for contrastive fusion
learning with small data in multimodal HAR applications. Cosmo
features a novel two-stage training strategy that can efficiently
extract consistent and complementary information of different
modalities from both unlabeled and limited labeled multimodal
data. Extensive experiments show that, Cosmo delivers significant
improvement over state-of-the-art baselines in both recognition
accuracy and convergence delay.
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